
J .  Fluid Mech. (1970), vol. 42, part 2, pp.  225-244 

Printed in Great Britain 
225 

Instability of erodible beds 
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Hydraulic Laboratory, Technical University of Denmark 

(Received 28 April 1969 and in revised form 14 November 1969) 

The stability of a sand bed in an alluvial channel is investigated by a two- 
dimensional mathematical model, based on the vorticity transport equation. 
The model takes account of the internal friction and describes the non-uniform 
distribution of the suspended sediment. It turns out that the inclusion of the 
friction and of a definite model of the sediment transport mechanism leads to 
results rather different from those obtained previously by potential-flow analysis. 

1. Introduction 
The formation of varied sandwave patterns in erodible channels has attracted 

considerable attention in recent years, probably because it constitutes an interest- 
ing phenomenon in itself, and because of its significance to hydraulic engineering. 
For a thorough review, readers are referred to a recent monograph by Allen 
(1968). 

The mechanics of dunes and antidunes was treated by Kennedy (1963) by 
means of a mathematical model considering the flow of a homogeneous ideal fluid 
over an erodible, sinusoidal bed. It was pointed out that a realistic picture 
required the assumption of a spatial lag between the maximum bed velocity and 
the maximum sediment transport rate. 

Kennedy’s theory was later supplemented with an analysis by Reynolds 
(1965). 

Engelund & Hansen (1966) tried to develop a stability theory based on the flow 
of a real fluid over a sinusoidal movable bed. To account for the non-hydrostatic 
pressure distribution caused by the vertical acceleration of fluid particles, these 
authors introduced a method very similar to one suggested by Boussinesq 
(1877). An empirical determination of the distance by which the sediment 
transport rate lags the shear stress at the bed made it possible to predict the 
condition for stable and unstable bed. This method made it possible to investi- 
gate even the occurrence of three-dimensional bed waves. 

The theory of bed-wave formation in erodible channels seems to have reached 
a stage where further progress must depend on improved account of the physical 
mechanisms involved. The formation of lower-r6gime bed waves (ripples, dunes) 
starts at very low sediment transport rates, where the sand particles move 
essentially as bed load. Upper-range bed waves (standing waves, antidunes), 
on the other hand, occur when the sediment transport is vigorous, so it is natural 
to assume that sediment transport in suspension will be a significant feature of 
this range. 
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This paper presents a mathematical model of flow over a sinusoidal, movable 
bed. An attempt has been made to introduce some additional features in the 
description in order to account for the most important physical effects respon- 
sible for the bed wave formation. Even so, the model makes use of some ra.ther 
drastic simplifications in order to permit a reasonably convenient mathematical 
description. 

The theory of transport by suspension in common use was developed by Rouse 
(1939) and verified experimentally by Vanoni (1946). This theory deals with the 
distribution of sediment concentration c under strictly uniform flow conditions. 
In  practice, however, the flow will usually be non-uniform as a result of standing 
waves and antidunes. Then the distribution of sediment concentration will be 
non-uniform, too, and in order to account for this in a reasonably simple way we 
proceed to replace the Rouse-Vanoni distribution with the less accurate 
exponential distribution (of equation (5)) mentioned by Brown (1949). This 
corresponds to a constant value of the eddy diffusivity ed over the whole depth, 
and is known to be a crude approximation close to the bed. Hence, we have to 
introduce a value of the sediment concentration a t  the bed, cbo, different from the 
one actually occurring. 

When the diffusivity is specified, the non-uniform sediment distribution may 
be accounted for by an equation describing the equilibrium between convection, 
settling and diffusion. 

The two-dimensional flow of a real fluid over a sinusoidal bed is described by 
the vorticity transport equation, using the eddy viscosity concept. 

Then, a linear stability analysis may be carried out in the conventional way, 
the plane bed being stable only if flow conditions are such that the amplitude of 
the sinusoidal bed waves is attenuated. 

2. Velocity and sediment distribution in uniform channel flow 
One of the basic difficulties in the formulation of a satisfactory mathematical 

model of erodible bed instability is that it  must account for the non-hydrostatic 
pressure distribution as well as fluid friction. Moreover, a complete theory of 
non-uniform turbulent shear flow does not exist a t  present, and consequently 
some kind of a semi-empirical turbulence theory must be applied. 

The eddy viscosity concept, which has been surprisingly successful in calcula- 
tions of self-preserving boundary layers and uniform channel flow, will be used 
here as an approximation for slightly non-uniform flow. 

To avoid very complicated calculations it is desirable to apply a constant value 
of the eddy viscosity e, and this is, in fact, possible within the frame of a technical 
turbulence theory if an adequate boundary condition is applied, as suggested by 
the author (1964). To illustrate the method, it is appropriate to consider first the 
simple case of a uniform, steady and two-dimensional channel flow. In  the case of 
hydraulic rough bed, the velocity profile is given by 
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in which U is the velocity, x2 the distance from the bed, k the equivalent sand 
roughness, and V,, the friction velocity defined by 

q o  = (To/P)4 (2) 

where 7, denotes the bed shear stress and p the fluid density. In  the major part of 
the flow (outside the constant stress layer) the velocity profile is alternatively 
well described by the parabolic velocity distribution obtained from integration 
of the flow equation, assuming a constant value of the eddy viscosity 8 

(3) 

"h0 ('h0 - 
FIGURE 1. Velocity and sediment concentration distributions in uniform channel flow. 

in which D is the flow depth, see figure 1. Instead of the rather abrupt logarithmic 
fall towards the wall, the parabolic velocity profile takes a finite UbO at the bed 
level, subscript 0 referring to the uniform state of flow. E and U,, are easily 
evaluated by matching the two profiles at  the outside of the constant stress 
layer. In this way it was found that 

E = 0.077Uf0D (4) 

(cf. Hinze 1959) and that for rough walls u b o  is determined by the equation 

D 
= 1.9+2.51n- = K ,  

u , O  k ( 5 )  

suggested by Engelund (1 964). 
The next problem is to create a reasonable model of the sediment distribution. 

In the case of steady, uniform flow the distribution of the volume concentration 
co is determined by the condition of equilibrium between settling and diffusion, 
expressed in the equation 

dc 
wco + EdS2 = 0, 

where w is the fall velocity of the sediment grains (Rouse 1939). If, as suggested 
by Brown (1949), the diffusivity ed is replaced by the constant value of the eddy 
viscosity E ,  the solution is 

cO = cbO exJ! ( - wx2/8) , (6) 
15-2 
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in which cbo is a nominal concentration a t  bed level. Because the variation of e has 
been neglected, the values of co predicted from (6) are generally somewhat smaller 
than the actual concentrations, see figure 1. 

I n  order to relate the bed concentration cbo to the bed shear stress we must try 
to estimate the total rate of suspended transport 

qs0 = 1: UcOdx, % VcbOe/w, (7) 

applying (6) and replacing the variable flow velocity U (cf. equation (3)) by the 
mean velocity V ,  

lo4 PSI4 

FIGURE 2. Suspended sediment transport relation. Simons, d = 0.19 mm, d = 0.28 mm. 
Brooks, d = 0.16 mm, d = 0.10 mm. Nomicos, d = 0.137-0.152 mm. 

For the average concentration, obtained by dividing qso by the fluid discharge 
q = V D ,  the following empirical formula is suggested 

In figure 2, (8) is compared with some experiments in which the suspended 
load was a dominating part of the total sediment transport. The bed configuration 
was in all cases antidunes or plane bed. The formula is not assumed to be more 
accurate than most other transport formulae. It has been applied mostly because 
of its convenience. From (7 )  we now find 

and after substitution of (4) and (8): 

coo = 13aU?,/w3. (9) 

This result is immediately seen to make physical sense: The square of the friction 
velocity equals the kinematical shear stress. The larger the shear stress, the 
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more violent is the tendency for fluid turbulence to pick up sediment particles 
from the bed. Similarly, the larger the settling velocity w, the more pronounced 
is the tendency for sediment particles near the bottom to leave the state of 
suspension by settling. Hence, it seems quite reasonable that the bottom con- 
centration cbo is determined by the ratio between the friction and the settling 
velocity, in accordance with (9). 

The non-dimensional factor a will probably depend on the sediment properties 
but has been put equal to 0.00056 in the present analysis; a value appropriate 
for the data plotted in figure 2. 

Besides the suspension, a certain part of the sediment moves as the bed load, 
i.e. in more or less continuous contact with the bed. The rate of bed load transport 
q b  has been found to follow the relation (Meyer-Peter & Muller 1948) 

in which s is the relative density of the sediment grains, g the acceleration of 
gravity, d the characteristic grain diameter, and 8 the non-dimensional tractive 
force defined by 

(11) 
8=- U? 

(s-  1)gd' 

The statements made so far are all concerned with the steady and uniform 
state of flow. For gradually varied flow some further assumptions have to be 
introduced. Probably, the most convenient and yet physically plausible step is to 
assume that the bottom concentration c b  and the bed load transport q b  respond 
to changes of the shear without any lag, so that c b  and qa still vary according 
to (9), (10) and (11), respectively, but with the local value of Uf substituted. 

3. The basic equations 

scribed by the vorticity transport equation 
Under the assumptions stated in the previous section, the flow may be de- 

dw 
- = & P O ,  
at 

for two-dimensional flow, the vorticity being defined by the equation 

x1 is a co-ordinate in the mean flow direction as indicated in figure 3; v1 and v 2  are 
the velocity components. 

Now it is assumed that flow consists of small, periodic perturbations super- 
posed on a uniform flow of the type described in $2. If the bed form is assumed to 
migrate with the velocity a, in the flow direction, the boundary slip velocity 
given by (5) must be modified to 
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where U, is the local value of the friction velocity, calculated along the bed surface 
from the expression 

The stream function yr tor the perturbation is defined by 

a+ a$ 
8x2 - ax, 

v , = U - -  and v --, 

in which U is the unperturbed velocity, given by (3). The vorticity w becomes 

2w= - U'+V,$ ,  

D 

s, 
V L . .  * .  . , . :. . . . . . . .  . .  . -  . .  . . .  

FIGURE 3. Definition sketch. 

the prime indicating differentiation in the 2,-direction. If this expression is 
substituted into the vort,icity transport equation and only first-order terms are 
retained, we get 

Next we consider the distribution of the suspended sediment load in a non- 
uniform flow. It is described by a local continuity equation expressing the 
equilibrium between settling, diffusion and convection. 

The sediment flux due to settling is equal to cw, where w is the sediment fall 
velocity vector. If e is the diffusivity, the sediment flux caused by diffusion equals 
e grad c. 

Hence, for a unit volume of the water sediment mixture, we obtain the following 
equation of continuity 

ac 
at - = div(-cwfegradc),  

ac ac 
- = W--t€V2C. 
at ax, 

When the uniform flow is perturbed, the concentration c is given by 

c = c,+c", 
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in which the perturbation c" is supposed to be small compared with the value c, 
pertaining to the uniform state. Hence, within the frame of a first-order theory, 
the local continuity equation becomes 

Now it is convenient to introduce dimensionless space and time variables, 
putting 

and to express the periodicity of the flow perturbations by 

ti = xi/D, t' = Vt /D,  

in which f and 4 are unknown functions, L the imaginary unit and k the wave- 
number. Further 

a = u,+ La; 

is a complex migration velocity of the bed waves. The real part equals the 
velocity introduced in (12). When the expressions (16) are substituted into 
(14) and (15), we obtain the following pair of ordinary differential equations in 
f and 4: 

(17)  
€ 

( U  - a)  [f" - (kD)2f ] - Ul'f = [fiy - 2(1tD)~f" f (kD)4f ] ,  

The perturbation of the sand bed is described by the local height h of the bed 
above the x1 axis, see figure 3, and is supposed to vary according to the expression 

h=h,exp 1kD gl--t '  . (19) [ ( a1 
Similarly, the water surface deviates from the unperturbed level by 

7 = yoexp[dcD(E,-;t')]. (20) 

For convenience the bed-wave amplitude h, is considered real. Only if the water 
surface amplitude v0 turns out to be real also, will the surface undulation be in 
phase with the bed wave. 

The final relationship of interest is the continuity of the total sediment move- 
ment. The total transport rate qt is now written as the sum of the bed load and 
the sumended loads 
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For an unsteady situation we get the following relation 

a@%; = - (1  - n)ah/at, 

in which n is the porosity of the sand bed. 

4. The boundary conditions 

expressed as 
(i) First we consider the kinematical boundary condition for the sand bed, 

ah ah ah _ -  - + u,- = v2, 
at at ax, 

where v2 is the vertical component at  bed level to be calculated from the stream 
function 9. When (16) is introduced, the boundary condition is reduced to 

h 
(23) V f ( 0 )  = j y 7 b o - a , .  

(ii) Secondly, we consider the shear stress along the bed, as obtained from (13). 
The boundary condition is given by (12), so that 

./P = ( Ub - a,)”IP. 

By the introduction of the stream function, the left-hand side becomes 

7 

P 

For the quantity V, -a, on the right-hand side we get similarly 

Ub - a, = Lk,, - cc, + U’h - Vf‘(0) exp 

When these expressions and (23) are combined, we get the first-order approxi- 
mation 

f ” (0 )  + e,fr(0) + ce f f 0 )  = 0, (24) 

where the coefficients are given by the following expressions 

and c2 N 
26 

c1 = -- 
K 

(iii) The third condition at the bed is based on the relation between the bed 
concentration cb and the local value of the shear stress. As accounted for in 
$2, it is assumed that cb  varies according to (9), so that along the bed surface 

In formulating the previous boundary condition we derived an expression for 
7. The analogous expression for c b  is 

c b  = Cbo+C~h+$(0)eXp 
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After substitution and linearization this boundary condition appears : 

(iv) The kinematical boundary condition for the water surface is exactly 
analogous to the condition for the bed and turns out to be 

V f ( 1 )  = E ( q 0 - a ) .  (26) 

That the normal stress vanishes at  the free surface is, to the first-order approxi- 
mation, expressed as 

when the surface tension is neglected and ps is the water pressure just below the 
surface. From this, we get 

23. = ELEDf’(1)exp 
P D  

Next, the equation of motion for c2 = 1 becomes 

in which S is the mean slope of the channel. I n  this the velocity v1 is expressed in 
terms of the stream function and the following relation pertaining to the uniform 
flow is applied: 

where S is the slope. Then the boundary condition becomes 

&u”+gx = 0, 

f ( 1 )  = 0. (27) 
LED V 2  1 U f o F 2 ( V , o - 4  

ikD 
f ” ( 1 ) + [  - 3 ( l ~ D ) ~ - - -  13(US0-a) f ’ (1)+13 ~- 

‘JO 

(v) The shear stress must vanish at  the free surface, which gives the condition 

t.V q o g  = [ f ” ( l )  + ( W 2 f ( 1 ) l ,  

or by the substitution of (26) 
f ’ f ( 1 ) + f ( l ) [ ( k D ) 2 + R ]  13 = 0. 

(vi) The last boundary condition is that the vertical sediment flux 

vanishes a t  the water surface. This gives the condition 

This ends the formulation of the boundary conditions. 
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5. The case of negligible bed load 
As the basic equations and boundary conditions have been developed, we are 

now able to carry out a stability analysis, that is, to predict under what conditions 
the initial bed wave amplitude h, will decrease or increase. As an important 
special case we consider first the instability corresponding to  flow conditions 
such that the bed load may be neglected. This situation will occur for fine sedi- 
ments and the rather high flow rates associated with large Froude numbers. 
Hence, the assumption of negligible bed load may be assumed to yield a fair 
description of the so-called upper-range bed configuration corresponding t o  
supercritical flow. 

The total rate of suspended sediment transport is then found from 

Qs = v1 c ax, 

Introducing the sediment transport qso for uniform flow, this equation may be 
written in the form 

Substitutting this and (19) into the continuity equation (22) for the sediment, we 
get 

The first step in the stability analysis is of course the solution of the basic 
equations (17 )  and (18), cf. Engelund (1968). 

Actually, (17) is of the Orr-Sommerfeld type but is easy to solve because no 
critical la,yer is present. In the first approximation the bed migration may be 
neglected putting a = 0. The complete solution comprises four independent 
particular solutions. When the function f has been found, the complete solution 
of (1s) is the sum of a particular solution and the complete solution of the homo- 
geneous equation. 

Then from (30) a preliminary value of the migration velocity a is obtained. By 
a straightforward and rapidly converging iteration procedure, the functions 
f and qi are corrected, and the final value of a is determined, This quantity, in 
general complex, depends on the following non-dimensional parameters 

F = V/(gB)h,  ICD, U,,/W and K (or V/U,,). 

I n  figure 4 the imaginary part at of the migration velocity is plotted against the 
Froude number F for reasonable, though arbitrary values of the parameters. 

For the example denoted by the dotted line, ai is negative for all Froude 
numbers, indicating stability of the flow. 
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The example denoted by the full line, however, is typical of the unstable 
situation. There is a zero of a( for a Froude number near the critical (F!  - 1.1) 
and another zero for a larger Froude number (F, - 1.6). 

10-3 

0 

- 10-3 

ai 

FIGURE 4. Variation of the imaginary part of the bed wave celerity as a function of the 
Froude number B'. The examples correspond to the parameter values U,/w = 1 and 
V / U ,  = 17. The full line indicates kD = 0.4, the dashed line LD = 0.25. 

The zeros indicate points of neutral stability, and for Froude numbers in the 
interval F ,  < P < F ,  w-e find positive values of aL, corresponding to instability. 

When a sufficient number of such calculations has been carried out, we are 
able to work out a stability diagram like that presented in figure 5. The curves of 
neutral stability form a parametric family of loops, the parameter being U,/w. 
The diagram corresponds to a constant value of the second parameter VjU,, but is 
not sensitive to changes in that value. 

The unstable area is bounded by two dashed, limiting curves, actually well 
known from previous investigations. The upper limiting curve is the stability 
boundary predicted from potential theory by Reynolds (1965), given by the 
equation F2 = coth (kD)/kD.  

The lower limiting curve corresponds to the condition of critical flow 

F2 = tanh (kD)/kD.  

That this curve is a stability boundary seems to be a new interpretation, as 
according to potential analysis this curve marks the transition from antidunes to 
dunes. Under these circumstances it may be of interest to consult some suitable 
experimentalevidence, such as the flume data reported by Kennedy (1961) and by 
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Guy, Simons & Richardson (1966). These data plotted in figure 6 correspond to 
the flow configuration characterized as standing waves or antidunes. If cases of a 
predominant three-dimensional character of the flow were disregarded, the 
agreement between theory and experiments would be still more convincing. 

3-5 

3.0 

~ 2.5 

2 

Eq 2.0 

3 v 

II 

I .5  

1 .a 

0.5 
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kD = (2nIL)D 

FIGURE 5. Stability diagram for the case ofnegligible bedload, corresponding to  V / U f  = 17. 

It should be pointed out that the assumption of negligible bed load restricts 
the validity of the result to  experiments with rather fine sediment. For the case of 
rather coarse sediment we can no longer be sure that there is a stable region for 
subcritical flow conditions. The problem will be further elucidated in 5 7.  

6. Discussion of results 
The agreement between the theoretical stability analysis and the observations 

does not necessarily imply that the model is in accordance with the actual 
mechanism of instability. Hence, it is of interest to describe the details of some 
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specific examples and to compare the flow patterns and the sediment distribution 
with general experience from flume investigations. 

As the first example consider a flow situation corresponding to a point situated 
at the lower branch of a curve of neutral stability, see figure 7. It is typical that 
the antidune is moving rapidly upstream and that the bed wave amplitude is 

a 

X 

Stable 
X 

0.5 ' 
0 0.5 I .o 1.5 

kD 

FIGURE G .  Asymptotic stability boundaries. Experiments by Guy, Simons & Richardson 
(1966): 0, d = 0.19-0.47 mm; and by Kennedy (1961): x ,  d = 0.23-0.55 mm. 

only about 5 yo of the surface wave amplitude, so that the bed will appear 
nearly plane. There is a rather large phase shift (about 32') between surface 
waves and bed waves, as is often observed in the laboratory, for example, 
by Kennedy (1 961). 

The bed concentration is largest near the troughs, where the largest flow 
velocity occurs, and smallest near the crest of the surface wave, while the 
concentration at  higher levels exceeds what corresponds to the undisturbed 
concentration distribution. Considering the flow from trough to crest, we realize 
that along this stretch the suspended sediment is gradually elevated. A corre- 
sponding lowering of the suspended material is realized along the stretch from 
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crest towards trough. This characteristic non-uniform distribution of the sedi- 
ment is well known from experiments. 

Figure 8 illustrates the flow corresponding to a point of the upper branch of the 
same curve of neutral stability. Under these circumstances the flow situation is 
strikingly different from the one considered above. The bed waves are now moving 

FIGURE 7. Flow pattern and concentration distributions for a neutrally stable bed wave for 
the lower branch of a stability curve. The example corresponds to the parameters U,/w = 3, 
kD = 1 and P = 0.866. 

very slowly and their amplitude is only slightly smaller than that of the surface 
waves. The phase shift is small and the concentration distribution is not very 
different from one vertical to another. 

Finally, we consider an unstable situation corresponding to a Froude number 
between the two considered before, see figure 9. The general description of the 
flow is not very different from that pertaining to figure 7, the most crucial 
difference being that the vertical gradient of the concentration is much smaller 
above the crest than above the trough. This means that sedimentation takes 
place at the crest and erosion occurs a t  the trough, thus increasing the bed wave 
amplitude corresponding to instability. 
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Another interesting result of the present analysis is that it introduces effects 
not accounted for by potential theory. 

First, we note that curves of neutral stability now do not extend to infinity, 
which explains how a plane stable bed may occur for large Froude numbers, as 
reported by Kennedy (1961). 

0.5 
6 2  

0.1 

0 

H L w 

i i 1 
FIGURE 8. Flow pattern and concentration distributions for a neutrally stable bed wave for 
the upper branch of a stability curve. The example corresponds to the parameters 
rJ,;if/w = 3, kD = 1 and F = 1.128. 

Secondly, it has often been reported that periods of plane bed configuration 
alternate with periods of developing wave trains (antidunes). Inspection of the 
stability diagram reveals apossibility of heuristic explanation of this phenomenon. 

Let us suppose that the average flow conditions correspond to a point situated 
at a curve of neutral stability. Then small fluctuations in the flow or sediment 
properties can cause fluctuations in the hydraulic parameters sufficient t o  shift 
from stable to unstable conditions, particularly in the regions where the location 
of the stability curve is very sensitive to changes in the parameter UJw. 
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7. Solution including bed load 
The distinction between suspended load and bed load as well as the precise 

definitions of these terms have caused much trouble for several decades and a 
redly satisfactory result has not been achieved so far. For the present model, the 
only important thing is that a certain amount of the total load is assumed to 

s, 

FIGURE 9. Flow pattern and concentration distribution for an unstable flow. The example 
corresponds to  the parameters U,/w = 3, kD = 1 and F = 1. 

respond very quickly to changes in the tractive stress so that the spatial lag may 
be neglected. This part of the total load is for the present purpose assumed to be 
equal to the bed load as determined from (10). In  effect, there is no profound 
theoretical or experimental support for the idea that the total sediment load is 
the sum of a bed load (determined from coarse material tests) and a suspended 
load determined from quite different flow conditions. However, for lack of 
better knowledge, this rather widely accepted assumption has been used in the 
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following in order to develop a model more plausible at small Froude numbers, 
where the bed load transport is usually rather dominant in practice. 

The analysis described above is changed only in so far as the continuity 
equation (30) is concerned. Using the assumption (21), the analysis proceeds 
along the same lines as before. 

1.5 

1.0 

0.5 

Stable 

Dunes 

. -  
0.5 1 .o I .5 

LD 

FIGURE 10. Stability diagram for the complete solution. The parameters are 
VIU, = 21 and U,/(wF) = 1. 

The results of the stability analysis are most conveniently presented in a 
somewhat different way, corresponding to a fixed value of grain diameter d and 
depth D. This implies a constant value of the ratio V/U,, at least to first approxi- 
mation. Further, the friction velocity V, must vary in direct proportion to the 
Froude number, as appears from the following manipulations : 

q = ( i q  V )  F(gD)if. 

For this reason the parameter U,/(wF) has been used. The second parameter 
is V/U,. 

Prom the theory of flow resistance in two-dimensional channel flow, it is 
known that this second parameter is related to the relative roughness of the 
bed by the following equation 

16 

V = 6-0+2.51n- D 
- 

Uf k' 
F L M  42 
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For a fixed bed, the equivalent roughness k is usually identified with the grain 
size d, referring to Nikuradse's test series. When sediment transport is involved, 
the relation is more complex, but for a plane bed or small sinusoidal undulations, 
it has been found that k is greater than d,  probably by a factor of 2 or 3 (Engelund 
& Hansen 1966). 

Antidunes 

Moving upstream 

Moving downstream 

__-- - - - -_  
/ - -  - -  

I 

Dunes 

1 I I t  

0.5 1 .o 1.5 
kD 

FIGURE 11.  Stability diagram for the completo solution. The paranictcrs are 
T'/U, = 21 and U,/(wF) = 1. 

It would require very many diagrams to cover completely the variations of the 
two parameters mentioned. The two typical examples given in figures 10 and 11 
illustrate some features of principal interest. 

The diagram presented in figure 10 is for 

corresponding to a rather fine sediment. The new and interesting feature is that 
the introduction of a bed load term creates a region of instability for small 
Froude numbers, while the upper stability boundary is unchanged. The pertur- 
bations are migrating downstream indicating the formation of dunes. 

For a given value of ICD there exists one Froude number for which the imaginary 
part a, of the migration velocity is a maximum, indicating the largest growth rate 
of the perturbation. These values are marked by the dashed curves. As pointed 
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out by Kennedy (1963), these privileged undulations are of particular interest, 
because they may be expected to determine the wavelength actually occurring. 

In figure 11 the parameter is changed to 

U,IWF = 1, 

which corresponds for the same depth to a considerably la.rger grain size. The 
diagram indicates that for the coarser material the stability boundaries shift to 
larger values of the Froude number, which is in agreement with experimental 
evidence. The flow becomes stable for F greater than 3.3. 

0 0.5 1 .o 
kD 

FIGURE 12. kD for dunes plotted against Froude number. Data from Guy, Simons & 
Richardson (1966), grain diameter d = 0.27 and 0.28 mm. The dashed curves are taken 
from figures 10 and 11. 

Hence, in this example the upper stability boundary is changed considerably. 
However, the conditions in this example are very extreme, because the bed load 
transport is rather dominant even for high Froude numbers. Little is known 
about sediment transport rates under such conditions, and the change of the 
upper stability boundary may be due to a shortcoming of the basic sediment 
transport relation. 

A direct comparison of theory and experiment is difficult for several reasons. 
One basic trouble is that the stability analysis assumes a plane bed, while the 
bed resulting from instability is covered by dunes, introducing considerable 
change of the flow resistance. Irrespective of this, actually measured values of 
the Froude number, when plotted against kD, exhibit a general trend (figure 12) 
similar to the theoretical predictions indicated in the previous figures. The data 
(Guy et al. 1966) correspond to the grain size d = 0.27 - 0.28 mm. 

8. Possibility of improving the model 
In some respects the model presented may be characterized as a rather crude 

one. For this reason the author should like to comment on the possibility for 
improvement. 
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The most obvious possibility is to take into account the variation of the diffusi- 
vity. This would give a more satisfactory description of the velocity and sediment 
distributions near the bed. 

This, however, is unlikely to yield any fundamental changes in the results or to 
a,dd essentially new features to the description. 

The author is indebted to Ove Skovgaard, for able assistance and programming. 
Dr Carl F.Nordin and Dr Eggert Hansen commented on the first draft and 
suggested improvements. Further, the author is indebted to Dr A. J. Reynolds, 
Brunel University, for stimulating discussions of the subject. 
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